Roof trusses are preengineered components. They are fabricated from 2inch-thick dimension lumber connected with metal truss plates. They are generally more efficient than stick framing and are usually designed to span from exterior wall to exterior wall with no intermediate support. In more complex portions of roof systems, it is still common to use rafter framing techniques.

Roof sheathing is a thin structural element, usually plywood or oriented strand board, that supports roof loads and distributes lateral and axial loads to the roof framing system. Roof sheathing also provides lateral support to the roof framing members and serves as a membrane or diaphragm to resist and distribute lateral building loads from wind or earthquakes (refer to Chapter 6).

Roof systems are designed to withstand dead, live, snow, and wind uplift loads; in addition, they are designed to withstand lateral loads, such as wind and earthquake loads, transverse to the roof system. The design procedure discussed herein addresses dimension lumber roof systems designed according to the NDS. Where appropriate, the procedure incorporates modifications of the NDS. Section 5.3 summarizes the general design equations and design checks based on the NDS. Refer to Chapter 6 for the design of roofs with respect to lateral loads on the overall structure; refer to Chapter 7 for guidance on the design of connections.

When designing roof elements or components, the designer needs to consider the following load combinations from Chapter 3 (Table 3.1):

- $D + (L_r \text{ or } S)$
- $0.6 \,\mathrm{D} + \mathrm{W_u}$
- D + W

The following sections refer to the span of the member. The NDS defines span as the clear span of the member plus one-half the required bearing at each end of the member. For simplicity, the clear span between bearing points is used herein.

Finally, roofs exhibit system behavior that is in many respects similar to floor framing (see Section 5.4); however, sloped roofs also exhibit unique system behavior. For example, the sheathing membrane or diaphragm on a sloped roof acts as a folded plate that helps resist gravity loads. The effect of the folded plate becomes more pronounced as roof pitch becomes steeper. Such a system effect is usually not considered in design but explains why light wood-framed roof systems may resist loads several times greater than their design capacity. Recent research on trussed roof assemblies with wood structural panel sheathing points to a system capacity increase factor of 1.1 to 1.5 relative to the design of an individual truss (Wolfe and LaBissoniere, 1991; Wolfe, 1996; Mtenga, 1998). Thus, a conservative system factor of 1.1 for chord tension and compression stresses.

5.6.2 Conventional Roof Framing

This section addresses the design of conventional roof rafters, ceiling joists (cross-ties), ridge beams, and hip and valley rafters. The design procedure for a rafter and ceiling joist system is similar to that of a truss, except that the

assembly of components and connections is site-built. It is common practice to use a standard pin-joint analysis to determine axial forces in the members and shear forces at their connections. The ceiling joists and rafters are then usually sized according to their individual applied bending loads taking into account that the axial load effects on the members themselves can be dismissed by judgment based on the large system effects in sheathed roof construction. Frequently, intermediate rafter braces that are similar to truss web members are also used. Standard construction details and span tables for rafters and ceiling joists can be found in the *International One- and Two-Family Dwelling Code* (ICC, 1998). These tables generally provide allowable horizontal rafter span with disregard to any difference that roof slope may have on axial and bending loads experienced in the rafters. This approach is generally considered as standard practice. Example 5.9 demonstrates two design approaches for a simply-supported, sloped rafter as illustrated in Figure 5.8.

Structural ridge beams are designed to support roof rafters at the ridge when there are no ceiling joists or cross-ties to resist the outward thrust of rafters that would otherwise occur. A repetitive member factor, C_r , is applicable if the ridge beam is composed of two or more members (see Table 5.4). It should also be noted that any additional roof system benefit, such as the folded plate action of the roof sheathing diaphragm, goes ignored in its structural contribution to the ridge beam, particularly for steep-sloped roofs. Example 5.10 demonstrates the design approach for ridge beams.

Roofs with hips and valleys are constructed with rafters framed into a hip or valley rafter as appropriate and, in practice, are typically one to two sizes larger than the rafters they support, e.g., 2x8 or 2x10 hip for 2x6 rafters. While hip and valley rafters experience a unique tributary load pattern or area, they are generally designed much like ridge beams. The folded plate effect of the roof sheathing diaphragm provides support to a hip or valley rafter in a manner similar to that discussed for ridge beams. However, beneficial system effect generally goes ignored because of the lack of definitive technical guidance. Nonetheless, the use of design judgment should not be ruled out. Example 5.11 demonstrates the design of a hip rafter.

5.6.3 Roof Trusses

Roof trusses incorporate rafters (top chords) and ceiling joists (bottom chords) into a structural frame fabricated from 2-inch-thick dimension lumber, usually 2x4s or 2x6s. A combination of web members are positioned between the top and bottom chords, usually in triangular arrangements that form a rigid framework. Many different truss configurations are possible, including open trusses for attic rooms and cathedral or scissor trusses with sloped top and bottom chords. The wood truss members are connected by metal truss plates punched with barbs (i.e., teeth) that are pressed into the truss members. Roof trusses are able to span the entire width of a home without interior support walls, allowing complete freedom in partitioning interior living space. The *Metal Plate Connected Wood Truss Handbook* contains span tables for typical truss designs (WTCA, 1997).